Awesome Glasses Logo

Context Awesome

Give your AI agents access to 8,500+ awesome lists with over 1 million curated resources.

What are Awesome Lists?
Community-curated collections of the best tools, libraries, and resources on any topic - from ML frameworks to design tools. This MCP server lets your agents recommend high-quality, vetted resources instead of random search results.

Demo: Using Context Awesome with Claude to find machine learning resources

8,500+
Awesome Lists
1M+
Curated Resources
850+
Categories

What is Context Awesome?

Context Awesome is a Model Context Protocol (MCP) server that provides instant access to the entire awesome lists ecosystem on GitHub. It enables AI agents to discover and retrieve high-quality, community-curated resources across any domain.

  • Search across 8,500+ awesome lists with semantic understanding
  • 1mn+ awesome curated resources.
  • Direct integration with Claude, Cursor, and VS Code
  • Token-optimized responses for efficient context usage

Installation

Quick Setup (Hosted Server)

Context Awesome is available as a hosted MCP server. No installation required! Just add the configuration to your MCP client:

Cursor

Settings → Cursor Settings → MCP → Add new global MCP server

{
  "mcpServers": {
    "context-awesome": {
      "url": "https://www.context-awesome.com/api/mcp"
    }
  }
}

Claude Code

Run in terminal:

claude mcp add --transport http context-awesome https://www.context-awesome.com/api/mcp

Windsurf

Add to MCP config:

{
  "mcpServers": {
    "context-awesome": {
      "serverUrl": "https://www.context-awesome.com/api/mcp"
    }
  }
}

VS Code

Add to settings:

"mcp": {
  "servers": {
    "context-awesome": {
      "type": "http",
      "url": "https://www.context-awesome.com/api/mcp"
    }
  }
}

Claude Desktop

Settings → Connectors → Add Custom Connector

  • • Name: Context Awesome
  • • URL: https://www.context-awesome.com/api/mcp

See installation for other MCP clients →

Local Installation (For Development)

1. Clone and Build

git clone https://github.com/bh-rat/context-awesome.git
cd context-awesome
npm install
npm run build

2. Configure for Local Use

Add to your MCP client configuration:

{
  "mcpServers": {
    "context-awesome": {
      "command": "node",
      "args": ["/path/to/context-awesome/build/index.js"],
      "env": {
        "CONTEXT_AWESOME_API_HOST": "https://api.context-awesome.com"
      }
    }
  }
}

3. Run the Server

# Default (stdio transport)
npm run start
# HTTP transport
npm run start -- --transport http --port 3001

Available MCP Tools

find_awesome_section

Discovers sections and categories across awesome lists matching your search query.

Parameters: query, confidence, limit

get_awesome_items

Retrieves items from a specific list or section with token limiting for optimal context usage.

Parameters: listId, section, tokens, offset

Example Queries

"Find the best machine learning resources for Python"

"What are the best resources for authoring technical books?"

"Show me testing tools from awesome-rust"

"Get React component libraries from awesome lists"

"Find database ORMs in Go awesome lists"

Additional Installation Methods

Cline
{
  "mcpServers": {
    "context-awesome": {
      "url": "https://www.context-awesome.com/api/mcp"
    }
  }
}
Zed
{
  "context_servers": {
    "context-awesome": {
      "url": "https://www.context-awesome.com/api/mcp"
    }
  }
}
Augment Code
  1. Click hamburger menu
  2. Select Settings → Tools
  3. Click + Add MCP
  4. Enter URL: https://www.context-awesome.com/api/mcp
Roo Code
{
  "mcpServers": {
    "context-awesome": {
      "type": "streamable-http",
      "url": "https://www.context-awesome.com/api/mcp"
    }
  }
}
Gemini CLI
{
  "mcpServers": {
    "context-awesome": {
      "httpUrl": "https://www.context-awesome.com/api/mcp"
    }
  }
}
Opencode
"mcp": {
  "context-awesome": {
    "type": "remote",
    "url": "https://www.context-awesome.com/api/mcp",
    "enabled": true
  }
}
JetBrains AI Assistant
  1. Settings → Tools → AI Assistant → MCP
  2. Click + Add
  3. Configure URL: https://www.context-awesome.com/api/mcp
Kiro
  1. Navigate Kiro → MCP Servers
  2. Click + Add
  3. Configure URL: https://www.context-awesome.com/api/mcp
Trae
{
  "mcpServers": {
    "context-awesome": {
      "url": "https://www.context-awesome.com/api/mcp"
    }
  }
}
Amazon Q Developer CLI
{
  "mcpServers": {
    "context-awesome": {
      "url": "https://www.context-awesome.com/api/mcp"
    }
  }
}
Warp
  1. Settings → AI → Manage MCP servers
  2. Click + Add
  3. Configure URL: https://www.context-awesome.com/api/mcp
Copilot Coding Agent
{
  "mcpServers": {
    "context-awesome": {
      "type": "http",
      "url": "https://www.context-awesome.com/api/mcp",
      "tools": ["find_awesome_section", "get_awesome_items"]
    }
  }
}
LM Studio

Navigate to Program → Install → Edit mcp.json

{
  "mcpServers": {
    "context-awesome": {
      "url": "https://www.context-awesome.com/api/mcp"
    }
  }
}
BoltAI
{
  "mcpServers": {
    "context-awesome": {
      "url": "https://www.context-awesome.com/api/mcp"
    }
  }
}
Perplexity Desktop
  1. Navigate Settings → Connectors
  2. Click Add Connector → Advanced
  3. Name: Context Awesome
  4. URL: https://www.context-awesome.com/api/mcp
Visual Studio 2022
{
  "inputs": [],
  "servers": {
    "context-awesome": {
      "type": "http",
      "url": "https://www.context-awesome.com/api/mcp"
    }
  }
}
Crush
{
  "$schema": "https://charm.land/crush.json",
  "mcp": {
    "context-awesome": {
      "type": "http",
      "url": "https://www.context-awesome.com/api/mcp"
    }
  }
}
Rovo Dev CLI

Run: acli rovodev mcp

{
  "mcpServers": {
    "context-awesome": {
      "url": "https://www.context-awesome.com/api/mcp"
    }
  }
}
Zencoder
  1. Zencoder menu (...) → Agent tools
  2. Click Add custom MCP
  3. Name: Context Awesome
  4. URL: https://www.context-awesome.com/api/mcp
Qodo Gen

Open chat panel → Connect more tools → + Add new MCP

{
  "mcpServers": {
    "context-awesome": {
      "url": "https://www.context-awesome.com/api/mcp"
    }
  }
}